Drug concentrations in one-compartment systems are frequently modeled using a single exponential function. Two methods of estimation are commonly used for determining the parameters of such a model. In the first method, non-linear least-squares regression is used to calculate the parameters. In the second method, the data are first transformed by a logarithmic function, and then the log-concentration data are fit using linear least-squares regression. The assumptions for fitting these models are discussed with special emphasis on which data points are most influential in determining parameter values. The similarities between fitting a linear regression model to the log-concentration data and fitting a weighted regression model to the original data are noted. An example is presented that illustrates the differences in fitting a model to the log-transformed data versus fitting unweighted and weighted models to the original-scale data.

译文

单室系统中的药物浓度通常使用单个指数函数进行建模。通常使用两种估计方法来确定此类模型的参数。在第一种方法中,使用非线性最小二乘回归来计算参数。在第二种方法中,首先通过对数函数对数据进行变换,然后使用线性最小二乘回归对对数浓度数据进行拟合。讨论了拟合这些模型的假设,并特别强调了哪些数据点对确定参数值最有影响。注意将线性回归模型拟合到对数浓度数据与将加权回归模型拟合到原始数据之间的相似性。给出了一个示例,该示例说明了将模型拟合到对数转换数据与将未加权和加权模型拟合到原始比例数据的差异。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录