Bictegravir, cabotegravir, dolutegravir, elvitegravir, and raltegravir are members of the latest class of antiretrovirals available to treat human immunodeficiency virus (HIV) infection, the integrase strand transfer inhibitors. Integrase strand transfer inhibitors are potent inhibitors of the HIV integrase enzyme with IC90/95 values in the low nanogram per milliliter range and they retain antiviral activity against strains of HIV with acquired resistance to other classes of antiretrovirals. Each of the integrase strand transfer inhibitors have unique pharmacokinetic/pharmacodynamic properties, influencing their role in clinical use in specific subsets of patients. Cabotegravir, approved for use in Canada but not yet by the US Food and Drug Administration, is formulated in both oral and intramuscular formulations; the latter of which has shown efficacy as a long-acting extended-release formulation. Cabotegravir, raltegravir, and dolutegravir have minimal drug-drug interaction profiles, as their metabolism has minimal cytochrome P450 involvement. Conversely, elvitegravir metabolism occurs primarily via cytochrome P450 3A4 and requires pharmacokinetic boosting to achieve systemic exposures amenable to once-daily dosing. Bictegravir metabolism has similar contributions from both cytochrome P450 3A4 and uridine 5'-diphospho-glucuronosyltransferase 1A1. Bictegravir, dolutegravir, and raltegravir are recommended components of initial regimens for most people with HIV in the US adult and adolescent HIV treatment guidelines. This review summarizes and compares the pharmacokinetics and pharmacodynamics of the integrase strand transfer inhibitor agents, and describes specific pharmacokinetic considerations for persons with hepatic impairment, renal dysfunction, pregnancy, and co-infections.