Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 ​dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.

译文

波束形成器用于估计测量的MEG/EEG信号基础的神经元源的时空特征。几个MEG分析工具箱包括线性约束最小方差 (LCMV) 波束形成器的实现。但是,实施方式及其结果的差异使波束形成器的选择和应用变得复杂,并可能阻碍其在研究和临床使用中的广泛采用。此外,不同MEG传感器类型 (例如磁力计和平面梯度计) 的组合以及用于干扰抑制的预处理方法 (例如信号空间分离 (SSS)) 的应用可以针对不同的实现以不同的方式影响结果。到目前为止,尚未对不同的实现进行系统的评估。在这里,我们使用具有和不具有SSS干扰抑制的数据集,在四个广泛使用的开源工具箱 (MNE-Python,FieldTrip,DAiSS (SPM12) 和Brainstorm) 中比较了LCMV波束形成器管道的本地化性能。我们分析了MEG数据,这些数据是i) 模拟的,ii) 从静态和移动的幻影记录的,以及iii) 从接受听觉,视觉和体感刺激的健康志愿者记录的。我们还研究了SSS的影响以及磁力计和梯度计信号的组合。我们在所有四个工具箱中量化了定位误差和点扩展体积如何随信噪比 (SNR) 变化。当以典型的SNR (3-15 dB) 仔细应用于MEG数据时,所有四个工具箱都可靠地定位了源; 但是,它们对预处理参数的敏感性不同。如预期的那样,在非常低的SNR下定位是非常不可靠的,但是我们发现前三个工具箱在非常高的SNR下定位误差也很高,而Brainstorm显示出更高的鲁棒性,但空间分辨率较低。我们还发现,SSS提供的SNR改进导致了更准确的定位。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录