Annihilation of electrons-holes recombination process is the main remedy to enhance the photocatalytic activity of the semiconductors photocatalysts. Doping of this class of photocatalysts by foreign nanoparticles is usually utilized to create high Schottky barrier that facilitates electron capture. In the literature, because nonpolar nanoparticles (usually pristine metals, e.g., Ag, Pt, Au, etc.) were utilized in the doping process, the corresponding improvement was relatively low. In this study, CdSO4-doped TiO2 nanoparticles are introduced as a powerful and reusable photocatalyst for the photocatalytic degradation of methomyl pesticide in concentrated aqueous solutions. The utilized CdSO4 nanoparticles form polar grains in the TiO2 matrix due to the electrons leaving characteristic of the sulfate anion. The introduced nanoparticles could successfully eliminate the harmful pesticide under the sunlight radiation within a very short time (less than 1 h), with a removal capacity reaching 1,000 mg pesticide per gram of the introduced photocatalyst. Moreover, increase in the initial concentration of the methomyl did not affect the photocatalytic performance; typically 300, 500, 1,000, and 2,000 mg/l solutions were completely treated within 30, 30, 40, and 60 min, respectively, using 100 mg catalyst. Interestingly, the photocatalytic efficiency was not affected upon multiple use of the photocatalyst. Moreover, negative activation energy was obtained which reveals super activity of the introduced photocatalyst. The distinct photocatalytic activity indicates the complete annihilation of the electrons-holes recombination process and abundant existence of electrons on the catalyst surfaces due to strong electrons capturing the operation of the utilized polar CdSO4 nanoparticles. The introduced photocatalyst has been prepared using the sol-gel technique. Overall, the simplicity of the synthesizing procedure and the obtained featured photocatalytic activity strongly recommend the introduced nanoparticles to treat the methomyl-containing polluted water.

译文

电子-空穴复合过程的Ann灭是增强半导体光催化剂光催化活性的主要手段。通常利用外来纳米颗粒对这类光催化剂进行掺杂,以产生促进电子捕获的高肖特基势垒。在文献中,由于在掺杂过程中利用了非极性纳米颗粒(通常是原始金属,例如Ag,Pt,Au等),因此相应的改进相对较低。在这项研究中,CdSO4掺杂的TiO2纳米颗粒被引入作为一种强大且可重复使用的光催化剂,用于在浓水溶液中光催化降解灭多明农药。由于电子留下了硫酸根阴离子的特性,因此所利用的CdSO4纳米颗粒在TiO2基体中形成了极性晶粒。引入的纳米粒子可以在非常短的时间内(不到1小时)成功地在阳光辐射下成功清除有害农药,其去除能力达到每克引入的光催化剂1000毫克农药。此外,甲基苯丙胺的初始浓度的增加不会影响光催化性能。通常使用100 mg催化剂分别在30、30、40和60分钟内分别处理300、500、1,000和2,000 mg / l溶液。有趣的是,光催化剂的效率不受光催化剂多次使用的影响。此外,获得了负的活化能,其揭示了所引入的光催化剂的超活性。独特的光催化活性表明电子-空穴复合过程完全消失,并且由于强电子捕获了所利用的极性CdSO4纳米颗粒的操作,电子在催化剂表面上大量存在。引入的光催化剂已经使用溶胶-凝胶技术制备。总体而言,合成过程的简便性和所获得的特征性光催化活性强烈推荐引入的纳米颗粒用于处理含甲met的污水。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录