K. Cheng (1986) suggested that learning the geometry of enclosing surfaces takes place in a geometric module blind to other spatial information. Failures to find blocking or overshadowing of geometry learning by features near a goal seem consistent with this view. The authors present an operant model in which learning spatial features competes with geometry learning, as in the Rescorla-Wagner model. Relative total associative strength of cues at a location determines choice of that location and thus the frequencies of reward paired with each cue. The model shows how competitive learning of local features and geometry can appear to result in potentiation, blocking, or independence, depending on enclosure shape and kind of features. The model reproduces numerous findings from dry arenas and water mazes.

译文

:K Cheng(1986)建议,学习封闭表面的几何形状是在对其他空间信息不了解的几何模块中进行的。未能通过目标附近的要素找到阻碍或过度学习几何学习的现象似乎与此视图一致。作者提出了一个操作模型,其中与Rescorla-Wagner模型一样,学习空间特征与几何学习竞争。某个位置的提示的相对总关联强度决定了该位置的选择,并因此决定了与每个提示配对的奖励频率。该模型显示了根据局部形状和特征种类,竞争性学习局部特征和几何形状会如何导致增强,阻断或独立性。该模型重现了来自干竞技场和迷宫般的大量发现。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录