The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.

译文

:表层土壤中新沉积的放射性核素的环境迁移是由复杂的生物地球化学关系驱动的,这对运输途径有重大影响。分配系数(Kd)可用于表征土壤-溶液交换动力学,并且是预测与土壤表面上剩余的放射性核素相比相对放射性量的重要因素,因此可用于整个侵蚀过程。 238U的Kd测量特别有用,因为238U在军事应用和相关测试中得到了广泛使用,例如在洛斯阿拉莫斯国家实验室(LANL)进行的测试。需要对238U的Kd进行特定地点的测量,因为Kd高度依赖于当地土壤条件,还取决于土壤的细碎度,因为238U集中在较小的土壤颗粒(如粘土和土壤有机材料)上,这些颗粒最容易受到风蚀和风蚀的影响。导致异地人群的吸入暴露。我们使用基于美国环境保护局(EPA)的协议对全土壤和细土壤部分(直径<45微米)进行了测量,测量了LANL两个相邻半干旱森林站点土壤中铀的Kd。 7-d Kd值(在EPA协议中指定)对于整个土壤而言为276-508 mL g-1,对于精细土壤馏分而言为615-2249 mL g-1。出乎意料的是,为测试土壤溶液交换平衡而测量的30 d Kd值是7 d值的两倍以上。使用2成分(FAST和SLOW)指数模型,得出溶液中238U对土壤的吸附速率。我们发现在LANL采样点之间,整个土壤和细土壤之间以及在7天至30天的Kd测量值之间,Kd值存在显着差异。土壤之间和土壤大小之间土壤溶液交换动力学的显着变化促进了使用特定地点的数据来估算环境传输速率,并暗示了从土壤到溶液(例如,进入地下水或肺液)的解吸速率可能存在差异。我们还探讨了风蚀,土壤特性和Kd值之间的潜在关系。综合起来,我们的结果强调需要对土壤溶液分配动力学有更好的机械理解,以便进行准确的风险评估。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录