BACKGROUND:Previously, family-based designs and high-risk pedigrees have illustrated value for the discovery of high- and intermediate-risk germline breast cancer susceptibility genes. However, genetic heterogeneity is a major obstacle hindering progress. New strategies and analytic approaches will be necessary to make further advances. One opportunity with the potential to address heterogeneity via improved characterization of disease is the growing availability of multisource databases. Specific to advances involving family-based designs are resources that include family structure, such as the Utah Population Database (UPDB). To illustrate the broad utility and potential power of multisource databases, we describe two different novel family-based approaches to reduce heterogeneity in the UPDB. METHODS:Our first approach focuses on using pedigree-informed breast tumor phenotypes in gene mapping. Our second approach focuses on the identification of families with similar pleiotropies. We use a novel network-inspired clustering technique to explore multi-cancer signatures for high-risk breast cancer families. RESULTS:Our first approach identifies a genome-wide significant breast cancer locus at 2q13 [P = 1.6 × 10-8, logarithm of the odds (LOD) equivalent 6.64]. In the region, IL1A and IL1B are of particular interest, key cytokine genes involved in inflammation. Our second approach identifies five multi-cancer risk patterns. These clusters include expected coaggregations (such as breast cancer with prostate cancer, ovarian cancer, and melanoma), and also identify novel patterns, including coaggregation with uterine, thyroid, and bladder cancers. CONCLUSIONS:Our results suggest pedigree-informed tumor phenotypes can map genes for breast cancer, and that various different cancer pleiotropies exist for high-risk breast cancer pedigrees. IMPACT:Both methods illustrate the potential for decreasing etiologic heterogeneity that large, population-based multisource databases can provide.See all articles in this CEBP Focus section, "Modernizing Population Science."

译文

背景:以前,基于家庭的设计和高风险谱系为发现高风险和中风险种系乳腺癌易感基因提供了价值。但是,遗传异质性是阻碍进展的主要障碍。新的策略和分析方法对于进一步发展将是必要的。通过改善疾病特征来解决异质性的潜力之一是多源数据库的可用性不断提高。涉及基于家庭的设计的进步所特有的是包括家庭结构在内的资源,例如犹他州人口数据库(UPDB)。为了说明多源数据库的广泛实用性和潜在功能,我们描述了两种不同的新颖的基于家族的方法来减少UPDB中的异构性。
方法:我们的第一个方法侧重于在基因作图中使用谱系信息的乳腺肿瘤表型。我们的第二种方法侧重于识别具有多效性相似的家庭。我们使用一种新颖的网络启发式聚类技术来探索高危乳腺癌家庭的多癌特征。
结果:我们的第一种方法在2q13处确定了全基因组重要的乳腺癌基因座[P = 1.6×10-8,对数的对数(LOD)等于6.64]。在该地区,IL1A和IL1B是引起炎症的关键细胞因子基因,引起了人们的特别关注。我们的第二种方法确定了五种多癌风险模式。这些簇包括预期的共聚集(例如与前列腺癌,卵巢癌和黑色素瘤的乳腺癌),并且还鉴定了新颖的模式,包括与子宫癌,甲状腺癌和膀胱癌的共聚集。
结论:我们的研究结果表明,谱系知悉的肿瘤表型可以定位乳腺癌基因,高危乳腺癌谱系存在多种不同的癌症多效性。
影响:这两种方法都说明了减少基于人群的大型多源数据库可以提供的病因异质性的潜力。请参阅“ CEBP焦点”部分“现代化人口科学”中的所有文章。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录