Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to classical approaches such as principal component analysis or independent component analysis, NCA makes use of the connectivity structure from transcriptional regulatory networks to restrict the decomposition to a unique solution. However, the existing version of NCA cannot incorporate information beyond the network topology such as information obtained from regulatory gene knockouts that constrain the dynamics of regulatory signals. The ability of incorporating such information enables a more accurate and self-consistent analysis over different experiments and extends NCA to systems that may not satisfy the identifiability criteria of NCA. In this paper, we derive a generalized form of NCA, gNCA, which significantly expands the capability of transcription network analysis by incorporating regulatory signal constraints arising from genetic knockouts. The theoretical bases including criteria for uniqueness of solution and distinguishability between networks are derived. In addition, numerical techniques for robust decomposition are discussed. gNCA is then demonstrated using an Escherichia coli wild-type strain and an isogenic arcA deletion mutant during a carbon source transition.

译文

:Network Component Analysis(NCA)是由网络结构驱动的框架,用于推导法规信号动态。与经典方法(例如主成分分析或独立成分分析)相反,NCA利用转录调控网络的连接结构将分解限制为唯一的解决方案。但是,NCA的现有版本无法合并网络拓扑结构以外的信息,例如从调节基因敲除中获得的信息,这些信息会限制调节信号的动态。合并这些信息的能力可以在不同的实验中进行更准确和自洽的分析,并将NCA扩展到可能不满足NCA的可识别性标准的系统。在本文中,我们得出了NCA的广义形式,即gNCA,它通过结合基因敲除产生的调控信号约束而大大扩展了转录网络分析的能力。得出包括解决方案的唯一性和网络之间的可区分性的标准在内的理论基础。另外,讨论了用于鲁棒分解的数值技术。然后在碳源过渡过程中使用大肠杆菌野生型菌株和同基因的arcA缺失突变体证明了gNCA。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录