The aim of present study was to examine the effects of the ethyl acetate fraction (EAF) from Platonia insignis on lipid peroxidation level, nitrite formation, and superoxide dismutase and catalase activities in rat striatum prior to pilocarpine-induced seizures as well as to explore its anticonvulsant activity in adult rats prior to pentylenetetrazole (PTZ)- and picrotoxin (PIC)-induced seizures. Wistar rats were treated with vehicle, atropine (25mg/kg), EAF (0.1, 1, and 10mg/kg), pilocarpine (400mg/kg, P400 group), PTZ (60 mg/kg, PTZ group), PIC (8 mg/kg, PIC group), atropine+P400, EAF+P400, EAF+PTZ, or EAF+PIC. Significant decreases in number of crossings and rearings were observed in the P400 group. The EAF 10+P400 group also had significant increases in these parameters. In addition, in rats treated with P400, there were significant increases in lipid peroxidation and nitrite levels; however, there were no alterations in SOD and catalase activities. In the EAF 10+P400 group, lipid peroxidation and nitrite levels significantly decreased and SOD and catalase activities significantly increased after pilocarpine-induced seizures. Additionally, effects of the EAF were evaluated in PTZ and PIC models. EAF did not increase the latency to development of convulsions induced with PTZ and PIC at the doses tested. Our findings strongly support the hypothesis that EAF does not have anticonvulsant activity in the different models of epilepsy studied. Our results indicate that in the in vivo model of pilocarpine-induced seizures, EAF has antioxidant activity, but not anticonvulsant properties at the doses tested.