The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed "phanorods"). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.

译文

:越来越多地考虑将噬菌体(噬菌体)用于抗菌治疗,以治疗抗药性感染。噬菌体已经进化出多种针对其细菌宿主的机制,例如高亲和力,对环境无害的受体结合蛋白。然而,传统的噬菌体疗法由于使用生物学无法完全表征(例如,潜在的基因转导)的指数复制,进化的实体而遭受多重挑战。为了解决这个问题,我们将噬菌体与金纳米棒结合,产生一种可以在使用时被破坏的试剂(称为“ phanorods”)。嵌合噬菌体经过工程改造,可以特异性附着于几种革兰氏阴性生物,包括人类病原体大肠杆菌,铜绿假单胞菌和霍乱弧菌,以及植物病原体黄单胞菌。生物共轭的体细胞可以通过光热消融选择性地靶向并杀死特定的细菌细胞。在近红外光激发后,金纳米棒通过非辐射衰变途径释放能量,从而局部产生热量,从而有效杀死目标细菌细胞。在铜绿假单胞菌生物膜的背景下突出了特异性,其中幽门架辐射杀死细菌细胞,同时对上皮细胞的损害最小。局部温度和粘度测量显示细菌高度局部化和选择性消融。辐照体也破坏了噬菌体,防止了复制并降低了传统噬菌体疗法的潜​​在风险,同时能够控制剂量。 phanorod策略将高度进化的噬菌体靶向策略与金纳米棒的光热特性相结合,为系统杀死细菌细胞创造了一个可控平台。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录